

ARE EELS ENDANGERED? Oceanic Factors & Adaptive Strategies

Brian Knights
University of Westminster/King's College London

INTRODUCTION

Threats to survival (natural and anthropogenic) can act during the oceanic, continental and catchment stages

and A. rostrata and A. anguilla show common features

	Oceanic	factors	and	adaptive	strategies
--	---------	---------	-----	----------	------------

LATER;-

■ Near-continent recruitment factors and strategies

□ Catchment recruitment factors and strategies

□ Relative importance of freshwater eels

□ Conclusions

['Hypotheses' and individual views in BLUE + supporting evidence!]

INTRODUCTION – OCEANIC ASPECTS

- □ Key common features & adaptive strategies of anguillids
- □ Relationships between recruitment and oceanic indices
- □ Possible cause-effect relationships and threats

ANGUILLID STRATEGIES

NB ELOPOMORPHS ARE 'ANCIENT' IN EVOLUTIONARY TERMS!!

- PANMICTIC
- **□** 'PERIODIC' LIFE STRATEGISTS (Winemiller)
 - Delay maturation to large size (females > 45 cm) with high fecundity
 - → to compensate for VERY high larval mortality
- OCEANIC ADAPTIVE STRATEGIES
 - Breed over deep oligotrophic subtropical oceans
 - Predators & competition **↓**
 - Long migrations
 - Resource partitioning
 - Leptocephalus adaptations
 - Nutrition = marine snow and DOM, i.e. low trophic level, only indirectly dependent on phytoplankton
 - Rapid & low energy cost growth of GAGs core
 - Forms energy reserve

N. Hemisphere spp. show similar recent recruitment declines from PEAK late 70-early80s (in nos. and condition factor) [plus MANY other synchronous ecological changes]

-IMPLYING RELATED CAUSES

OCEANIC-CLIMATE FACTORS HAVE MAJOR IMPACTS ON EELS

e.g. indicated by relationships between recent/historical recruitment and the NAO for *A. anguilla* and for *A. rostrata* (Castonguay) (and the SOI/ENSO for *A. japonica* (Kimura 2003)

'Best' evidence = LONG TERM Den Oever time series v NAO - e.g. using very 'noisy' raw data & noting lags $(R^2 = 0.15)$;-

[+ proxy & anecdotal historical evidence?]

CAUSE-EFFECT RELATIONSHIPS? OCEANIC-SCALE RECRUITMENT

(Leptocephalus drift modelling by Kettle & Haines, In Press, etc)

NB V. HIGH MORTALITY > 99.3%

CAUSE-EFFECT RELATIONSHIPS (FOR ALL 3 SPP?)

- Starvation
- Advection
- Mismatches
- in the breeding areas and/or during migration

NOW OVER TO MICHAEL MILLER AND KEVIN FRIEDLAND TO DISCUSS POSSIBLE CAUSE-EFFECT RELATIONSHIPS IN MORE DEPTH